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Abstract
Specific problems arising in the use of the method of renormalization group
and ε expansion in the theory of developed turbulence are discussed: the
necessity to take into account the dependence of the model parameters on
the expansion parameter ε and the large magnitude of the physical value
of the expansion parameter. It is shown that quantities independent of the
amplitude of the correlation function of the random force possess a uniquely
defined ε expansion. On the example of the two-loop calculation of the
Kolmogorov constant and the turbulent Prandtl number, effectiveness of the
improved expansion is demonstrated, which uses an approximate summation
of the high-order terms of the ε expansion.

PACS numbers: 47.27.Ef, 47.27.Gs, 47.27.Te

1. Introduction

In the stochastic model of turbulence the eddy velocity field ϕi(x, t) of an incompressible fluid
conforms to the Navier–Stokes equation with a random force

∂tϕi + (ϕj∂j )ϕi = ν0�ϕi − ∂iP + Fi, (1)

where P(t, x) is the pressure and Fi(t, x) is a transverse external random force per unit mass
compensating for the losses of the eddy energy due to viscous dissipation and ensuring the
existence of the turbulent stationary regime. For F a Gaussian distribution is assumed with
zero mean and the correlation function

〈Fi(x)Fj (x
′)〉 = δ(t − t ′)(2π)−d

∫
dk Pij (k)dF (k) exp[ik(x − x′)], (2)
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where Pij (k) = δij − kikj /k2 is the transverse projection operator, dF (k) is a function of
k ≡ |k| and model parameters and d is the dimension of the x space. In the steady state, the
integral of the ‘pumping function’ dF (k) coincides with the energy dissipation rate per unit
mass Ē

Ē = (d − 1)

2(2π)d

∫
dk dF (k). (3)

Objects to be investigated in the model (1), (2) are the correlation functions 〈ϕ(x1, t1),

ϕ(x2, t2) · · · ϕ(xn, tn)〉, where the brackets 〈· · ·〉 denote averaging over the random force F.
There is extensive experimental information about the structure functions Sn(r)—single-time
correlation functions of the form

Sn(r) ≡ 〈[ϕr(t, x + r) − ϕr(t, x)]n〉, ϕr ≡ (ϕi · ri)

|r| . (4)

According to the experimental data the functions Sn(r) assume the simplest form in the inertial
range rdiss � r � L

Sn(r) � Cn(Ēr)n/3(L/r)ξn , rdiss � r � L, (5)

where rdiss ≡ (ν3/Ē)1/4 is the characteristic size of the dissipating eddies. The existence of
the inertial range in systems with developed turbulence (large Reynolds numbers Re � 1) is
ensured by the inequality L/rdiss ∼ Re3/4 � 1. The task of the theory is to substantiate the
powerlike asymptotics (5) and calculate the exponents ξn and amplitudes Cn.

At present there is a rigorous result only for the function S3(r):

S3(r) = − 12

d(d + 2)
Ēr, (6)

which corresponds to values C3 = −12/d(d + 2) and ξ3 = 0 in (5), obtained by Kolmogorov
on the basis of the analysis of the equation of the spectral balance of energy [1]. In accordance
with the theory of Kolmogorov the function S3(r) in the inertial range does not depend on
either the viscosity (or on rdiss) or on the external scale L. According to (5) independence of
the viscosity holds for all functions Sn(r). However, as the experiment (available to n = 18)
shows, the second assumption of Kolmogorov is not fulfilled in the general case: the exponents
ξn are nonzero and monotonically grow with the growth of n, i.e. the functions Sn(r) in the
inertial range keep a ‘memory’ of the external scale of turbulence (‘anomalous scaling’).
The problem of substantiation of the anomalous scaling and calculation of the anomalous
exponents ξn has not been solved up to date; significant progress in this respect, however, has
been made in the related problem of turbulent mixing of a passive admixture (see, e.g., [2]).

Among the structure functions Sn(r) the functions S2(r) and S3(r) connected with the
spectral density of the pulsation energy (S2(r)) and its transfer velocity (S3(r)) have a special
place. As noted already, for S3(r) hypotheses of the theory of Kolmogorov are completely
fulfilled. As to the anomalous exponent ξ2, there is no unambiguous experimental proof of its
deviation from zero, it may only be asserted that ξ2 is small. Thus, the experimental data are
fairly accurately described by the known ‘two thirds’ law of Kolmogorov

S2(r) � CK(Ēr)2/3, rdiss � r � L, (7)

where CK is the Kolmogorov constant (see the discussion in [3]). We also note that in the
model of turbulent transport of the passive admixture it has been proved that the anomalous
scaling is absent in the second-order structure function (ξ2 = 0) [2].

The stochastic problem (1)–(2) is equivalent to the quantum-field model with the number
of fields doubled φ ≡ {ϕ, ϕ′, } and with the action

S(
) = ϕ′DF ϕ′/2 + ϕ′[−∂tϕ + ν0�ϕ − (ϕ∂)ϕ], (8)
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where DF is the correlation function of the random force (2), and necessary integration over
{t, x} and summation over vector indices are implied. The equivalence to the stochastic
problem (1)–(2) means that the averages 〈· · ·〉 over the distribution of the random force F
coincide with the corresponding functional averages over the pair of fields φ ≡ {ϕ, ϕ′} with
the weight ∼ exp S(φ).

To apply the renormalization-group (RG) method, it is necessary to use in (2) a pumping
function dF (k) of a special form [4, 5]

dF (k) = D0k
4−d−2ε. (9)

In the infrared region the power function (9) is assumed to be cut off at k � m ≡ L−1. The
quantity ε > 0 in (9) in the renormalization-group approach plays the role of the formal small
expansion parameter, whose physical value is considered to be ε = 2 (see below for details).

The model (2), (8) gives rise to the standard perturbation theory and Feynman’s
diagrammatic technique with the charge g0 ≡ D0

/
ν3

0 as the expansion parameter. On
dimensional grounds g0 ∼ µ2ε (µ is the renormalization mass), wherefrom it is seen that—
contrary to the theory of critical phenomena—in the theory of turbulence it is impossible to
achieve the logarithmic model (dimensionless g0) with the use of the space dimension d, but
only putting ε = 0. Another important difference between these theories is that the amplitude
D0 in (2) depends on ε in an essential way. Let us explain this in more detail.

The pumping function dF (k) is not universal. On physical grounds it may only be asserted
that it is localized on scales k ∼ m ≡ L−1, where L is the external scale of turbulence (the
size of eddies pumped in the system). If we are interested in eddies of significantly lesser
size (inertial and dissipation ranges), then the pumping function dF (k) may be considered
proportional to the δ function δ(k). We obtain a powerlike model of such a δ function from
(9), if we suppose that the limit ε → 2 − 0 with the amplitude D0 ∼ (2 − ε) corresponds to
the physical case. This is corroborated by the explicit form of the structure function S3(r) in
the inertial range, for which in the model (2), (8), (9) the generalization of the Kolmogorov
relation (6) holds [6]

S3(r) = −3(d − 1)�(2 − ε)(r/2)2ε−3D0

(4π)d/2�(d/2 + ε)
. (10)

For the relation (10) to yield (6) in the limit ε → 0 it is necessary that

D0 � 4(2 − ε)�2ε−4

Sd(d − 1)
Ē, ε → 2 − 0, (11)

which just corresponds to the powerlike model of the δ function described above (here, � is
an arbitrary parameter of the dimension of inverse length and Sd = Sd/(2π)d , where Sd is the
area of the d-dimensional unit sphere).

The diagrams of the perturbation theory diverge at ε = 0. In the limit ε → +0
these divergences appearing in the form of poles in ε are removed by the multiplicative
renormalization of the viscosity ν0 and the charge g0 = D0

/
ν3

0

ν0 = νZν, D0 = g0ν
3
0 = gµ2εν3,

g0 = gµ2εZg, Zg = Z−3
ν

(12)

with the only independent renormalization constant Zν—a consequence of the Galilei
invariance of the theory and absence of divergence at d > 2 of the non-local term ∼ ϕ′ϕ′ in
the action (8).

On the basis of the renormalization constants, the β functions are found in the standard
fashion and the position of the fixed point determined β(g∗) = 0. One-loop calculation shows
that such a fixed point g∗ ∼ ε does exist and that it is IR stable: β ′(g∗) > 0. The connection
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(12) between the renormalization constants has the consequence that at this fixed point the
critical dimension �ϕ of the field ϕ is determined exactly: �ϕ = 1 − 2ε/3. From this point
of view, calculation of the diagrams is required only for a confirmation of the stability of the
fixed point. For the structure functions Sn(r) it gives rise to the following IR asymptotics:

Sn(r) � r−n�ϕ Rn(r/L) = r(2ε/3−1)nRn(r/L), r � rdiss. (13)

The renormalization-group representation (13) corroborates the hypothesis of Kolmogorov
of independence of the structure functions of the viscosity in the IR region. The second
hypothesis of independence of Sn(r) of the external scale L in the inertial range is tantamount
to assumption that the limiting values Rn(r/L → 0) are finite, whereas the anomalous scaling
(5) is obtained, if Rn(r/L) ∼ (r/L)−ξn , when r/L → 0.

The RG approach allows us to calculate the functions Rn(r/L) as an expansion in the
formal small parameter ε. The perturbation theory in such a form cannot yield relations
of the anomalous scaling. Indeed, let us assume that some exponent ξ of the anomalous
scaling possesses an ε expansion ξ = ξ (0) + εξ (1) + · · · . Then in the renormalization-group
calculation of the function Rn(r/L) the factor (r/L)−ξ turns out to have a representation as
the expansion (r/L)−ξ = (r/L)−ξ (0)

[1 − ξ (1)ε ln(r/L) + · · ·] and for the correct investigation
of the asymptotics r/L → 0 it is necessary to sum the ‘leading logarithms’ εn lnn(r/L) and
to prove that they actually are exponentiated into corresponding powers. Such a summation is
not carried out directly by the renormalization group (it sums ‘ultraviolet leading logarithms’
of the form εn lnn(r/rdiss)). In the theory of critical phenomena, the analogous problem is
solved with the aid of operator expansion, which provides the proof of the powerlike character
of the asymptotics discussed, with the interpretation of the exponents −ξn as dimensions of
some composite operators, which allows us to calculate them in the form of the ε expansion.
In all known cases these dimensions turn out to be positive, i.e. the corresponding ξn < 0.
This means that contributions in the form of powers of r/L are correction terms and the
correlation functions possess finite limit at r/L → 0. In the theory of turbulence ξn > 0 for
all n > 3, from the point of view of the operator expansion it means that in the theory there
are operators with negative critical dimensions (‘dangerous operators’). Such operators have
not been found yet. The problem is that it is difficult to identify them with the aid of the
ε expansion due to the large real value of the parameter ε: there is a class of operators for
which the ε expansion terminates [7], but there are no dangerous operators among them and
the consistency of approximate calculation of the rest rises legitimate doubts4.

The problem of calculation of characteristic quantities, for which the ε does not terminate,
is common in the theory of turbulence, although there are known cases, when already the
account of the first term of this expansion leads to fairly good agreement with experiment.
The calculation of the turbulent Prandtl number—the ratio of the effective coefficient of the
viscosity and the effective coefficient of the thermal diffusivity—may serve as an example
[10] (the coinciding in the form result for equations of magnetohydrodynamics was obtained
in [11]). It was unclear until recently how coincidental the agreement with the experiment is
in this case, because the magnitude of the correction was not known: all calculations were
restricted to the lowest one-loop approximation. The first two-loop calculation in the theory
of turbulence was carried out for the Kolmogorov constant [6] and it showed that the two-loop
contribution in this case is of the same order of magnitude as the one-loop contribution, thus
confirming the pessimistic prognoses.

4 The methods of the RG and OPE have been successfully used for the description of the anomalous scaling in the
problem of turbulent mixing of a passive admixture. In the simplified model of Kraichnan the anomalous exponents
of structure functions of the admixture have been calculated at the order ε3 [8], and in a more realistic model (1), (27)
(see below) at the order ε2 [9].
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In the present paper, we consider the problem of evaluation of the Kolmogorov constant
and the turbulent Prandtl number without touching the delicacies of anomalous scaling. It will
be shown that satisfactory results in calculation of these quantities may be obtained if a partial
resummation of ε is carried out which removes singularities of its coefficients as functions of
the space dimension d at d → 2.

2. Kolmogorov constant, skewness factor

As we have seen, in the theory of turbulence the amplitude D0 depends on the parameter ε.
Only the asymptotic form of this dependence in the limit ε → 2 dictated by the condition (11)
is determined unambiguously. Obviously, the physical content of the theory is not changed,
if the right-hand side of (11) is multiplied by any function ψ(ε) such that ψ |ε=2 = 1. This
means that at ε �= 2 all quantities depending on D0 acquire an arbitrary dependence on ε. The
Kolmogorov constant CK belongs to them, thus its ε expansion is not uniquely defined. This
explains different values of CK obtained by various authors in the one-loop approximation
[12–20].

To obtain unambiguous results it is necessary to deal with universal quantities independent
of D0. These are quantities such as critical dimensions of the fields, parameters and composite
operators, as well as suitable ratios of amplitudes, e.g. the turbulent Prandtl number. Other
examples of such quantities are dimensionless ratios of the structure functions Sn(r)

/
S

n/2
2 (r),

in particular, the skewness factor

S ≡ S3
/
S

3/2
2 , (14)

independent of the separation distance r in the Kolmogorov approximation (7). The real values
of CK and S are connected, according to (6), (7) and (14) by the relation

CK =
[
− 12

d(d + 2)S

]2/3

. (15)

Having calculated part of the ε expansion of the skewness factor S and putting ε = 2 with the
aid of (15) we may then find the corresponding approximation for the Kolmogorov constant
CK. In the evaluation of the skewness factor (14) there is no need to carry out the RG
calculation of the function S3(r) because the exact result (10) may be used. There is, however,
an additional problem in the calculation of S2(r) which may be circumvented if, instead of
the function S2(r) its derivative S̃ ≡ r∂rS2(r) is used [6]. In the inertial range the latter
differs from S2(r) by the factor 2/3 only at the real value ε = 2. From S̃2(r) and S3(r) the
dimensionless ratio

Q(ε) ≡ r∂rS2(r)

|S3(r)|2/3
= r∂rS2(r)

(−S3(r))2/3
(16)

may be constructed which, as the skewness factor, does not depend on the amplitude D0,
hence having a uniquely defined ε expansion. Having calculated first terms of this expansion,
we may thus at the real ε = 2 find, with the use of (14) and (15), the skewness factor and the
Kolmogorov constant:

S = −
[

2

3Q(2)

]3/2

, CK = 3Q(2)

2

[
12

d(d + 2)

]2/3

. (17)

The ε expansion of the quantity Q(ε) is of the form

Q(ε, d) = ε1/3
∞∑

k=0

Qk(d)εk, (18)
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whose coefficients Qk(d) are successively determined as the result of one-loop, two-loop etc
calculations. The one-loop calculation is feasible in arbitrary space dimension [6],

Q0 = (1/3)[4(d + 2)]1/3, (19)

whereas a numerical two-loop calculation for d = 3 yields Q1/Q0 � 0.525 [6]. Substitution
of these results in (17) and (18) yields for the Kolmogorov constants the values CK = 1.47
and CK = 3.02 in the one-loop and the two-loop approximation, respectively, the former of
them being smaller than the most reliable experimental estimate CK = 2.01 [21] and the latter
being significantly larger. Thus, the account of the two-loop correction leads to the change of
the one-loop value of CK in the ‘necessary direction’, but the large relative magnitude of the
correction (of the order 100%) gives rise to doubts about the consistency of the results in this
calculational scheme.

In this context, we recall that ε expansions of various statistical characteristic quantities
obtained in the framework of the RG method in the majority of field-theoretic models are
semi-convergent, in which it is reasonable to keep some finite number of terms, because
from a certain point the series begins to diverge drastically. In practice this is determined
by the relative magnitude of the last term taken into account. In the present case, the first
correction is already rather large, and in such a situation the necessity arises in summing—even
if approximately—of the whole ε expansion. In the theory of critical phenomena the Borel
summation of semi-convergent series is widely used to this end with the knowledge of both
the first few terms of the ε expansion and the asymptotics of the expansion coefficients at large
orders obtained with the aid of the ‘instanton approach’ [22]. In our case the prerequisites for
such a summation are absent: only two terms of the expansion are known and only first steps
of the instanton approach to dynamic problems have been made [23].

Nevertheless in the theory of turbulence it is possible to carry out a summation of the ε

expansion with the use of specific features of the coefficients of this expansion as functions
of the space dimension d [24]. Calculation of the two-loop contribution to the quantity (18)
at d �= 3 has shown that the relative portion of the two-loop contribution decreases with the
growth of d and in the limit d → ∞ it is only 10% of the one-loop contribution. At the same
time this portion grows with decreasing d tending to infinity, when d → 2 [6]. Such behaviour
is a consequence of that the coefficients of the ε expansion have singularities at small d, the
nearest of which lies at the point d = 2. The analysis of the diagrams of the perturbation
theory shows that these singularities are poles in d − 2 ≡ �, the order of which increases
with the order of the perturbation expansion, so that the coefficients Qk(d) in (18) may be
expressed in the form of the Laurent expansion

Qk(d) =
∞∑
l=0

qkl�
l−k, � ≡ d − 2. (20)

Substitution of (20) in (18) leads to the representation of the quantity Q(ε, d) in the form of
the double sum

Q(ε, d) = ε1/3
∞∑

k=0

∞∑
l=0

(ε/�)kqkl�
l. (21)

It turns out to be important that diagrams having poles at d → 2 yield the main contribution
in Qk(d) (of the order 90%) also at d = 3. It allows us to hope for a successful result if
the leading singularities in d − 2 may be singled out and summed up in all orders of the
ε expansion. This may be done by taking repeatedly advantage of the possibilities of the
renormalization group.
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Figure 1. Illustration of the subsequences of the double sum (21) summed in the calculation
of Q

(n)
eff in equation (26). Terms in the double sum (21) taken into account in Q

(n)
ε,� and Q

(n)
ε

correspond to the shaded horizontal and vertical stripes, respectively. The correction term δQ(n)

corresponds to sum over the double-shaded square.

Setting the quantity � ≡ d − 2, an additional to ε formal small parameter of the theory
of the same order with ε, we may renormalize the theory in the vicinity of d = 2. This
requires the introduction of an additional renormalization constant of the term ∼ϕ′ϕ′ in the
action (8), which assumes a local form at d = 2. Thus, a theory with two charges and two
β functions emerges, and the one-loop calculation shows that it also has an IR-stable fixed
point [25]. Physical quantities in this theory are constructed in the form of expansions in ε,
the coefficients of which depend on the parameter ξ ≡ �/ε:

Q(ε, ξ) =
∞∑

k=0

�k(ξ)εk, ξ ≡ �/ε. (22)

Comparing (22) with (21) we infer

�k(ξ) =
∞∑
l=0

qlkξ
k−l . (23)

Thus, there are two alternative ε expansions (16) and (22). The corresponding n-loop
calculations in the usual renormalization scheme and in the scheme of double expansion in
the vicinity of d = 2 allow us to find the initial terms of these expansions

Q(n)
ε ≡

n−1∑
k=0

Qk(d)εk, (24)

Q
(n)
ε,� ≡

n−1∑
k=0

�k(ξ)εk. (25)

Relations (24) and (25) contain complementary information, which becomes obvious in
figure 1 illustrating infinite subsequences of the double sum (21) being summed up in (24)
and (25). A term in the sum (21) is depicted by a dot (k,l) in figure 1. An exact expression for
Q(ε, d) is obtained by the account of all dots from the first quadrant. The shaded regions in
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Table 1. One- and two-loop values of the Kolmogorov constant in the usual ε expansion (Cε) and
the double ε, � expansion (Cε,�); the contribution Cδ from the correction δQ(n) in equation (26),
and the value Ceff from equation (26).

n Cε Cε,� Cδ Ceff

1 1.47 1.68 1.37 1.79
2 3.02 3.57 4.22 2.37

figure 1 correspond to dots taken into account in the two-loop approximation: the horizontal
stripe corresponds to terms from Q(n)

ε (24), the vertical stripe to those from Q
(n)
ε,� (25). All

terms in the shaded area will be taken into account in the effective quantity

Q
(n)
eff = Q(n)

ε + Q
(n)
ε,� − δQ(n), (26)

where

δQ(n) ≡
n−1∑
k=0

n−1∑
l=0

(ε/�)kqkl�
l

is a subtraction term necessary to avoid double counting of terms with k � n − 1, l � n − 1
(the double-shaded square in figure 1). It may be found by taking the corresponding number
of terms from expansions (20) or (22). From the point of view of the usual ε expansion
(16) relation (26) may be interpreted as follows: in the n − 1 first terms of the expansion
the coefficients Qk(d) from equation (16) are calculated exactly, but in all higher-order terms
(k � n) approximately with the account of n − 1 first terms of their Laurent expansion (20).

In table 1 we have quoted for comparison the values of the Kolmogorov constant calculated
at first and second order of the usual ε expansion (Cε), the double ε,� expansion (Cε,�), the
contribution Cδ from the correction δQ(n) in equation (26) and the value Ceff obtained from the
relation (26). In all the cases quoted, the recommended experimental value of the Kolmogorov
constant Cexp = 2.01 lies between the values of the first and second approximations. However,
the difference between these values is rather significant both in the ε expansion and in the
(ε,�) expansion, let alone the leading terms of the ε expansion of the latter. For the improved
ε expansion, i.e. for the quantity Ceff = Cε +Cε,� −Cδ calculated according to equations (26),
however, this difference is about three times smaller leading to far better agreement with the
experimental data.

3. Turbulent Prandtl number

The idea of improving the ε expansion described above has been checked in the problem of
description of the process of the turbulent mixing of a passive admixture [26]. This process is
described by the diffusion equation with the convective transport term:

∂tψ + (ϕj ∂j )ψ = κ0�ψ + f. (27)

The field ψ(x, t) in equation (27) may have the meaning of both the non-uniform temperature
(κ0 being the coefficient of thermal diffusivity) and concentration of the particles of the
admixture (in this case κ0 is replaced by the coefficient of diffusion). The field f (x, t) is the
source of the passive scalar field. The passiveness of the field ψ shows in that it does not
affect the correlation functions of the field of turbulent eddies ϕ.

As the object of calculation in the model (27) we chose the turbulent Prandl number. Let
us recall that the Prandtl number Pr is the dimensionless ratio of the coefficient of kinematic
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viscosity ν0 to the coefficient of thermal diffusivity κ0: Pr = ν0/κ0. (In the formally
identical problem of turbulent diffusion the ratio of the coefficients of kinematic viscosity and
diffusion is called the Schmidt number). For systems with strongly developed turbulence the
process of homogenization of the temperature is strongly accelerated, which is reflected in
the value of the effective or turbulent coefficient of thermal diffusivity κtur. The ratio of the
coefficient of turbulent viscosity νtur and the coefficient of turbulent thermal diffusivity is the
turbulent Prandtl number: Prtur = νtur/κtur. Contrary to its molecular analogue the turbulent
Prandtl number is universal, i.e. does not depend on individual properties of the fluid.

The stochastic problem (1), (2), (27) is equivalent to the quantum-field model with the
doubled number of fields 
 ≡ {ϕ,ψ, ϕ′, ψ ′} and the action

S(
) = ϕ′DF ϕ′/2 + ϕ′[−∂tϕ + ν0�ϕ − (ϕ∂)ϕ] + ψ ′[−∂tψ + κ0�ψ − (ϕ∂)ψ + f ]. (28)

Let us specify the definition of the turbulent Prandtl number Prtur in the model (28) with the
use of the Dyson equation

G−1
ψψ ′(k, ω) = −iω + κ0k

2 − �ψ ′ψ(k, ω) (29)

for the response function of the admixture field

Gψψ ′(x − x′, t − t ′) ≡ 〈ψ(x, t)ψ ′(x′, t ′)〉|f =0 = δ〈ψ(x, t)〉
δf (x′, t ′)

∣∣∣∣
f =0

(30)

and the analogous equation for the eddy field ϕ

G−1
ϕϕ′(k, ω) = −iω + ν0k

2 − �ϕ′ϕ(k, ω) (31)

(� are the self-energy operators). Proceeding from (29) and (31) we introduce effective low-
frequency coefficients of viscosity νtur, thermal diffusivity κtur and the corresponding effective
Prandtl number Pr tur

νtur ≡ ν0 − �ϕ′ϕ(k, ω = 0)/k2,

κtur ≡ κ0 − �ψ ′ψ(k, ω = 0)/k2, P rtur ≡ νtur/κtur.
(32)

The relation (32) for Prtur reduces to the usual definition of the Prandtl number for a laminar
flow (at � = 0); for turbulent systems Prtur is independent of the wavenumber k in the inertial
range.

Renomalization of the model (28) requires the introduction of an additional
renormalization constant of the coefficient of thermal diffusivity κ0: κ0 = Zκκ . Calculation
of this constant has shown that the extended model also has an IR-stable fixed point [10].
This is the basis for the calculation of the turbulent Prandtl number (32) in the form of the ε

expansion. The two-loop calculation at d = 3 yields [26]

Prtur = Pr(0)
∗ (1 + 0.0358ε) + O(ε2), 1/P r(0)

∗ =
√

43/3 − 1

2
� 1.3930. (33)

At the physical value ε = 2 this yields for the turbulent Prandtl number Prt the result,

Pr
(0)
tur � 0.72, P rtur � 0.77 (34)

in one-loop and two-loop accuracy, respectively. These values are in a very good agreement
with the experimental estimate Prtur � 0.81 currently considered the most reliable [27–29],
and the account of the two-loop correction notably improves the agreement with the
experiment.

The small value obtained for the two-loop contribution to the turbulent Prandtl number
appears quite astonishing: like in the calculation of the Kolmogorov constant separate diagrams
yield rather large contributions to the coefficients νtur and κtur, while in the ratio νtur/κtur these
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contributions compensate each other nearly completely. The reason is clarified by inspection
of the dependence of these contributions on the space dimension d. It turns out that—as in
the case of the Kolmogorov constant—large contributions at d = 3 are produced by diagrams
having a pole in � = d − 2. In the ratio νtur/κtur, however, these pole contributions are
completely mutually cancelled.

Thus, our results for the turbulent Prandtl number complement the conclusion made for
the Kolmogorov constant. In the two-loop approximation the main contribution is due to
graphs having a singularity at d = 2 and it is necessary to sum such graphs. For quantities in
which this singularity is absent, the two-loop contribution is relatively small and the results of
the usual ε expansion appear fairly reliable at the level of accuracy suggested by the two-loop
correction.

4. Conclusion

The analysis carried out here allows us to draw two main conclusions about the possibilities
of the use of the ε expansion in the stochastic theory of turbulence.

(i) This expansion is well defined only for universal quantities independent of the amplitude
of the correlation function of random force.

(ii) To obtain acceptable quantitative results in calculation of those physical quantities, whose
ε expansion does not terminate, it is necessary to analyse the behaviour of the coefficients
of the expansion in the vicinity of d = 2. If they have finite limit, when d → 2, then we
may expect a successful description of this particular physical quantity (at d = 3) with the
account of first terms of its ε expansion (as in the case of the turbulent Prandtl number).
If, on the contrary, the coefficients of the expansion of the physical quantity have poles at
d → 2, then it is necessary to sum the pole contributions in all orders of the ε expansion
and for the calculation of this quantity use the ‘improved ε expansion’.

In conclusion, let us point out that the procedure of construction of the improved ε expansion
described here is relevant for three-dimensional systems. For two-dimensional turbulence
separate analysis is needed due to both its specific physical properties (the presence of
an infinite number of conservation laws, the inverse energy cascade) and purely technical
problems: the necessity to take into account singularities of the expansion coefficients in even
lower dimensions of space d.
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